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Advantages of using visual programming to create, modify, test and display a telemetry
stream are presented. Commercial visual programming software is being used to test
new algorithms as part of the ground support for the Galileo spacecraft Test IIcd. It is
very important that any new software algorithms l-m thorcmghly  tested on the ground
before any modifications arc made to the spacecraft.

Visual programming provides easy visibility into the ctccommutaticm process, including
real-time data display and error detection. A data acquisition bc~ard is LWCCI to clock in
the actual synchronous telemetry signal from the I’est Bed at rates below 10 k? Iz. T’ime
to write and modify code using visual programming is signifjcant]y less, by a factor of 4
to 10, than using text-based code. The gains in productivity are attributed to the
communication among the customer, developer, and computer that arc facilitated by
the visual syntax of the language.

INTRODUCTION

~he Measurement 3’cchnology  Center (MT(’) evaluates commercial data acquisition,
analysis, display and control hardware and software products that are then made
available to experimenters at the Jet Propulsion 1,abmatory.  IT-I addition, the Mrl’C acts as
a systems integrator to deliver turn-key measurement systems that inc]udc software,
user  interface, sensors (e. g., thermocouples, pressure transducers) and signal
conditioning, plLIs data acquisition, analysis, display, simulation and control
capabilities.1’z

Visual programming tools are frequent] y used to simplify development (compared to
text-based programming) of such systems. 1 imp] oymcnt of visua] programming tools
that control off-the-shelf interface cards has been the most important factor in reducing
time and cost of configuring these systems. The M’1 ‘C consistent] y achieves a reduction
in software/systen~ development time by at least a factor of four, and Lip to an order of
magnitude, compared to text-based software tcm]s.~,4,5,~  Others in industry are reporting
simi]ar increases in productivity and reduction in software /systenl  development time
and cost.7,~,9



BACKGROUND

l’hc Galileo spacecraft will arrive at ]upitm in Lleccmber of 1995. It will be put into a
highly elliptical orbit with a period of about three months. l;ach orbit will be modified
slightly to allow the spacecraft to encounter a different moon or feature of Jupiter. For a
few days during these close encounters, intense data acquisition will be performed with
the data logged to the on-board tape recorder. I luring the remainder of each thrcc-
nmnth  orbit while the spacecraft is relatively far from Jupiter, the computer subsystems
will be involved in compressing and compacting the tape data and downloading it to
earth at a very low bit-rate (due to the high-rate dish antenna’s failure to fully open).

Currently, the M“I’C is supporting a software redesign of the computer system aboard
the Galileo  spacecraft. This paper documents the programming effort  to verify the
correct rc-programming of the Galileo  cc)mputer  subsystems by monitoring the
te]cmetry  of the ground ~’est Vcd setup of the computer subsystems and the emu]ation
hardware for the instruments to assure that every byte is correctly downloaded. 3’lw
support is for the process, not the data itself. I’he M’] ‘C is using 1,abVll}W software
among other tools to help test the flight software redesign. For details on the 1,abVl EW
programming environmcmt, other sources exist.1°,11f12
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]~icurc  1 shows the Ground Sum>ort  %auence. The Point of this effort is to test the
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co;~~prcssicm  algorithms plus tl;c’ ccnnmutation  of th~ data into packets. lJsing visual
programming, software was developed to perform the various compression algorithms
to be used on the different science instruments. l{ach instrument has multiple modes of
compression to take into acccmnt the relative value of the data at differing times in the
mission. ‘1 ‘he compressed data for each of these modes for each instrument are stored in
files called the Predict Tables. A necessary additional component was a Test Bed
simulator so all of the other programs cou]d be developed and debugged before
connection to the Test Bed.



During a test, the Test Bed reads the raw instrument data, performs the compression
and commutation algorithms to be verified and outputs a telemetry stream. An analyzer
was developed to monitor the telemetry from the ~’est Bed, decomrnutate  the data,
compare it to data in the Predict Tables and display the progress of the test.

l.,abVl IIW running on a Macintosh ~Lladra  was used as the programming environment
for this task because it had proved to be superior in similar tasks.1~ 3’}w advantages
1,abVl}~W provides include the ease with which the cLlstomer can con~n~Llnicate
requirements to the programmers and understand the operation of the program so that
changes can be suggested, I’hc gains in productivity are attributed to the
communication among the customer, developer, and computer that are facilitated by
the visL~al  syntax of the language. 1,abVlliW proved exceptionally capable in providing
an integrated environment tc) manage all aspects of the telemetry test, from pre-test  data
set-up to post-test discrepancy resol Lltion, as well as runnin$  the test in several
simulator modes or with the Galileo hardware.
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“1’he telemetry from the 1,ow-Gain Antenna Mission of the Galileo spacecraft contains
data from the fifteen instrL~nwnt  sources. ‘1 ‘hey arc assigned mnemonics as listed in
l’able 1. ltach of these instrLmwnts  has from two to seven types of data or modes of
operation which extend the mnemonic names with a sing]e digit, I’hme are a total of
fifty-six of these instrument types and each is assigned an application identification
(App ID) code. l’he data from these App IIYs is independently collected into packets of
up to 511 bytes and appended to a header of from three. to eight bytes (l~igLlre  2). The
packets are then assembled into VCI )I_J’s (Virtual Channel Ijata Units) which always
contain four bytes of header and 442 bytes of packets with provisions for allowing
packets to roll over from one VCI)U to a later one (I;igure 3). }iour VCI)U’S (a total of
1784 bytes) arc then assembled into a frame with a two-byte frame nL~ndmr,  an eight-
bytc PN (pseudo-noise) sync word, and 254 bytes of Reed-%lomon error-correction
codes applied in eight unequal-size groups. ~’his 2048-byte frame is then rLln through
convolutional encoding which doubles the number of bytes producing 32768 bits of
telemetry. l;igLlre 4 is a schematic of the frame structure.
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liigure 3. VC.1 )LJ Structure

~ ‘l~e testing of this telemetry stream involves a reverse process SC) that the data from the
individual packets assigned to each of the App 1 I Ys can be recovered and compared to
its predicted value. The first step is to captL~rc  the telemetry in real time. The telemetry
stream from the Computer 1 )ata Subsystem consists of a clock line and a data line, both
swinging between zero and five volts. The clock line is connected directly to the sample
input on a data acquisition board. (X1 each low-going transition of this clock line, the
voltage on t}w data ]ine is measured and stored in memory using the double-buffered
data acquisition mode of l-,abVlllW which provides for continuous sampling of an input
voltage. The sampled voltages are compared to a t}wcshold  (set at 2.5 volts) producing a
single data bit for each clock.

The second step is to run these bits throu#~  a de-convo]utiona]  process which
purpody does not correct for errors bLlt produces two bit streams. The eight-byte PN
sync word is searched for in both of these streams until it is foLlnd in one of them, at
which point the other one is ignored. I’he next 2040 bytes are {hen assembled into a two-



byte frame sequence number, 254 bytes of Reeci-%lomon  error-correction codes, and
four  VC1 IU’s o-f 446 bytes each, -

Ily[cs: II 1VC’I )LJ 2 Vcflu 3 VCI )tJ 4

82 446 446 454 692

Rncdecl region (2048 Hytes,  16384 bits)
—-

tIl Ikita I-kwt-%lomon Error Correction

};igLlrc 4. I’clemctry l;ranm Structure

2 ‘he full screen (21 inch
]:igure 5. It gives an idea

monitor) user interface (1 ,abVl}{W }Iront Panel) is shown as
of the complexity of the user interface required to display the. .

a~;alysis. It l;;s been given boxes and” numbers  to help explain in de~ail.

};igurc .5 (part 1 ) displays the number of bits occurring before the sync word was found,
the frame number and whether it is out of sequence, and whether the eight groLlps of
Reed-Solon~on  codes arc incorrect (no corrections are applied). I’hese (RS) errors are
disp]aycd in red in the frame in which they occur and change to yellow on SLlbSCCILl(’]lt
frames. “1 ‘l~e operator can click on these latching error indicators, changins  them to
green. “1’he buffer indicator displays the status of the real-time buffer. The 1,og 3’1 ,M
switch allows the operator to save t}m raw telemetry stream to a disk file for later
analysis.

“1 ‘Iw third step is to check the headers of the four VC1 )U’s (Ijigure 3). “1 ‘hese headers
contain three bits defining a VCI )lJ 11) type numbered zero throug}l seven, twenty bits
defining a sequence number, and nine bits LIsccl to handle the roll-c)ver of packets
bet wccn VCI ~l_J’s. l;ach of the eight VC1 )LJ 1 I Ys keeps track of its own sequence number
and can contain packets only from certain App 11 Ys, lhrors are again displayed in
latching red, yellow, green indicators.

‘1’he fourth step (l~igure .5, part 2) is to partition each VCIIU into packets, temporarily
storing any partial packet at the end and recombining any remnant packet at the
beginning with its previously stored partial. ~’he analyr,er displays the sequence of
packets within the four VClllJ’s contained in each frame in two different ways. }~irst,  a
series of vertical text windows identifies information on each packet with three red-
green error indicators below them. The top line of the text window displays the VCl)lJ
11 J numbc’r followed by a letter signifying the position of the VCDtJ  within the frame.
1,ower-case letters (a, b, c, & d) are used for partial packets at the end of the V(l)LJ’S
and upper-case letters (A, B, C., & 1]) are used for complete packets and for remnant
packets at the begi]llli]lg  of the VCI)lJ’S which have been combined with their



previously stored partia]s.  3 ‘he three error indicators below each packet text window are
“turned off” (shown in gray) for the partial packets at the end of each VC1 IIJ because
errors arc not processed until the partial is combined with its remnant. ‘1’he second line
of the text window displays the App 1 [1 mnemonic  and number. ]Jurther clown the text
window is the packet size which  includes on] y those bytes within the current VCI IU.
‘1’he sum of the packet si~,es for all the packets (including remnants and partials) within
each VCIIU will equal 442.

~’he second way that the packets within the four VCDU’S in each frame arc displayed is
in a scrollable  strip-chart (part 3). ~’he frames are delineated with marks at the top and
bottom of the strip-chart, ‘l’he VC3 )U’s are delineated with vertical gridlines,  separating
the frame into four parts. The first one (on the left) corresponds to the VC3 >U with the
letter “A,” the next one “II,” then “C,” and finally “II” on the right. l’he VCI )U numbers
arc indicated by the colors of the stripes labeled “VCI )lJ 1 I Y’ on the strip-chart. White,
for example, corresponds to VC1 )U 111 (J. The positions of the striped segments making
up the lower two-thirds of the strip-chart indicate the App 11) mnemonics within each
VC1 )LJ. I’heir colors indicate the App 1 I ) numbers and their lengths indicate their sizes.
‘1 ‘he errors are indicated by red stripes at the top of the strip-chart.

3’he fifth step is to display the packet header information in the text window (part 2).
~’he current and previous sequence numbers are, displayed and the corresponding error
indicator below the text window is turned red. %me App 11) types allow for a format
II 1 of four or eight bits which is used to interpret the data (I;igure 2). “J’hese bits are
displayed cm {he FMT ID line as one or two hex nybbles. q’hc time of the packet (in
spac~craft  c]ock Llnits) can be optionally included in the header. A “1’ime ]nc]uded” bit
in the header signifies whenever t}~is happens. l’he actual number of bits of time varies
depending on the App II) and is between 20 and 32 bits and is displayed as five to eight
hex nybb]es if present. When less than 32 bits, the mom significant bits are discarded.

‘1 ‘he sixth step is to analyze the packet data. ~’he size is displayed on the I )ata Size line in
the text window. llach App 111 has associated with it a file containing the predicted
telemetry bytes called the predict table. WhcJ~  each packet is received (including a
remnant attached to a partial) it is searched for in its predict table. If it is found, its
location is indicated in the text window at Prdt Tb] ])ointer and the next expected
location is saved in memory. ‘1’he  next time the same App 11) occurs, if the data in the
packet is not found at the expected location, the ~’able Seq Iirror indicator will show red.
If the data cannot be found in its predict table, the Not-In-Table Error indicator shows
red. The three error indicators below each packet text window are not latched; i.e., they
always show status for t}w current frame.

3’hc seventh step is to update the small latched error indicators in the 1’ackct ltrror
Status Panel (part 4). llach App 111 has a set of three indicators corresponding to the
t}~rcc  indicators below the packet text windows, I’he onc on the left is the %q l~rror, t}w
center one is the ‘I’able Seq }Irror, t}m right-hand one is the Not-] n-rl’able Frror. Any new
errors during the current frame will appear as red and change to yellow on subsequent



frames. The operator can clear any of these indicators by clicking on them individually
or all of them at once by hitting the Reset kh-rors  button,

The eighth step is to update the large text window (part 5) which provides details on the
errors. in addition to the information included in other places on the panel, offending
packets are dumped so that post analysis can be performed. I’his text window can also
be written to a file by turning on the 1,og StatLls  switch.

l’hc last step involves controlling other diagnostic windows under control of the
operator, including packet windows which display all the data for a particular App II>,

VC1 )U windows which display all the data for a particular VCDU type, a frame
window which displays the entire unprocessed frame, and a statistics window which
displays the cLlrrent seqLlcnce  number, the current format 1 i ), and the ]atest inc]Llded
time for each App 111.

CONC’l,lJSIONS

A visual programming langLlage was able to create, modify, test and display a telemetry
stream. It provided easy visibility into the deconlnlLltatiml  process modified by the
C~alilcn programming support team. The time to write and modify the code using visual
programming was significantly less (by a factor of 4 to 10) than using text-based code.
“J’his task showed that it is possib]e  to LISe visua] programming for rca]istic
programming applications. It also confirmed that visual programming  can significantly
reduce software development time compared to text-based programming.

Other advantages demonstrated were in the areas of prototyping  and verification.
I)iffcrcmt approaches can be demonstrated and evaluated quickly using a visual
programming langL~age. Verification can be demonstrated using the graphical user
interface feat Llres available in a visua] programming ]anguage  C’asic’r  than Llsing
conventional text-based code.

As stated, the gains in productivity are attributed to the communication among the
customer, developer, and computer that arc facilitated by the visual syntax of the
language. The advantages 1,abVl I{W provides include the ease with which t}w customer
can communicate requirements to the programmers and understand the operation of
the program so that changes can be suggested. With this col~~~~~LII~icatio~l,  the
boundaries between requirements, design, devc]opmcmt,  and test appear to collapse.
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